
Bluetooth Low Energy in iOS Swift

by Tony Gaitatzis

Copyright © 2015 All Rights Reserved

All rights reserved. This book or any portion thereof may not be reproduced or used
in any manner whatsoever without the express written permission of the publisher ex-
cept for the use of brief quotations in a book review. For permission requests, write
to the publisher, addressed “Bluetooth iOS Book Reprint Request,” at the address be-
low.

backupbrain@gmail.com

This book contains code samples available under the MIT License, printed below:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit per-
sons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ii

mailto:backupbrain@gmail.com?subject=Bluetooth%20iOS%20Book%20Reprint%20Request
mailto:backupbrain@gmail.com?subject=Bluetooth%20iOS%20Book%20Reprint%20Request

Services and Characteristics

Before data can be transmitted back and forth between a Central and Peripheral, the
Peripheral must host a GATT Profile. That is, the Peripheral must have Services and
Characteristics.

Identifying Services and Characteristics

Each Service and Characteristic is identified by a Universally Unique Identifier (UUID).
The UUID follows the pattern 0000XXXX-0000-1000-8000-00805f9b34fb, so that a
32-bit UUID 00002a56-0000-1000-8000-00805f9b34fb can be represented as
0x2a56.

Some UUIDs are reserved for specific use. For instance any Characteristic with the
16-bit UUID 0x2a35 (or the 32-bit UUID 00002a35-0000-1000-8000-00805f9b34fb) is
implied to be a blood pressure reading.

For a list of reserved Service UUIDs, see Appendix IV: Reserved GATT Services.

For a list of reserved Characteristic UUIDs, see Appendix V: Reserved GATT Char-

acteristics.

Generic Attribute Profile

Services and Characteristics describe a tree of data access points on the peripheral.
The tree of Services and Characteristics is known as the Generic Attribute (GATT) Pro-
file. It may be useful to think of the GATT as being similar to a folder and file tree (Fig-
ure 6-1).

87

 Service/ 
	 Characterstic  
	 Characterstic  
	 Characterstic  

 Service/ 
	 Characterstic  
	 Characterstic  
	 Characterstic

Figure 6-1. GATT Profile filesystem metaphor

Characteristics act as channels that can be communicated on, and Services act as
containers for Characteristics. A top level Service is called a Primary service, and a
Service that is within another Service is called a Secondary Service.

Permissions

Characteristics can be configured with the following attributes, which define what the
Characteristic is capable of doing (Table 6-1):

88

Table 6-1. Characteristic Permissions

Descriptor Description

Read

Write

Write without Response

Notify

Central can read this Characteristic, Peripheral can set the value.

Central can write to this Characteristic, Peripheral will be notified when
the Characteristic value changes and Central will be notified when the
write operation has occurred.

Central can write to this Characteristic. Peripheral will be notified when
the Characteristic value changes but the Central will not be notified that
the write operation has occurred.

Central will be notified when Peripheral changes the value.

Because the GATT Profile is hosted on the Peripheral, the terms used to describe a
Characteristic’s permissions are relative to how the Peripheral accesses that Charac-
teristic. Therefore, when a Central uploads data to the Peripheral, the Peripheral can
“read” from the Characteristic. The Peripheral “writes” new data to the Characteris-
tic, and can “notify” the Central that the data is altered.

Data Length and Speed

It is worth noting that Bluetooth Low Energy has a maximum data packet size of 20
bytes, with a 1 Mbit/s speed.

Programming the Central

89

The Central can be programmed to read the GATT Profile of the Peripheral after con-
nection, like this:

peripheral.discoverServices(nil)

If only a subset of the Services hosted by the Peripheral are needed, those Service
UUIDs can be passed into the discoverServices function like this:

let serviceUuids = ["1800", "1815"]

peripheral.discoverServices(serviceUuids)

When the Services are discovered, a callback will be executed by the CBPeripheral-
ManagerDelegate, containing an updated CBPeripheral object. This updated object
contains an array of Services:

func peripheral(

 _ peripheral: CBPeripheral,

 didDiscoverServices error: Error?)

{

 if error != nil {

 print("Discover service Error: \(error)")

 }

}

In order for the class to access these methods, it must implement CBPeripheralMana-
gerDelegate.

There are Primary Services and Secondary services. Secondary Services are con-
tained within other Services; Primary Services are not. The type of Service can be dis-
covered by inspecting the CBService.isPrimary flag.

boolean isPrimary = service.isPrimary

90

To discover the Characteristics hosted by these services, simply loop through the dis-
covered Services and handle the resulting peripheral didDiscoverCharacteristicsFor
callback:

func peripheral(

 _ peripheral: CBPeripheral,

 didDiscoverServices error: Error?)

{

 if error != nil {

 print("Discover service Error: \(error)")

 } else {

 for service in peripheral.services!{

 self.peripheral.discoverCharacteristics(nil, for: service)

 }

 }

}

func peripheral(

 _ peripheral: CBPeripheral,

 didDiscoverCharacteristicsFor service: CBService,

 error: Error?)

{

 let serviceIdentifier = service.uuid.uuidString

 if let characteristics = service.characteristics {

 for characteristic in characteristics {

 // do something with Characteristic

 }

 }

}

Each Characteristic has certain permission properties that allow the Central to read,
write, or receive notifications from it (Table 6-2).

91

Table 6-2. CBCharacteristicProperties

Value Permissi
on Description

read Read

write Write

writeWithoutResp
onse Write

notify Notify

Central can read data altered by the Peripheral

Central can send data, Peripheral reads

Central can send data. No response from
Peripheral

Central is notified as a result of a change

 
In iOS, these properties are expressed as a binary integer which can be extracted like
this:

let properties = characteristic.properties.rawValue

let isWritable = (properties & \

 CBCharacteristicProperties.write.rawValue) != 0;

let isWritableNoResponse = (properties & \

 CBCharacteristicProperties.writeWithoutResponse.rawValue) != 0;

let isReadable = (properties & \

 CBCharacteristicProperties.read.rawValue) != 0;

let isNotifiable = (properties & \

 CBCharacteristicProperties.notify.rawValue) != 0;

A Note on Caching

Because Bluetooth was designed to be a low-power protocol, measures are taken to
limit redundancy and power consumption through radio and CPU usage. As a result,
a Peripheral’s GATT Profile is cached on iOS. This is not a problem for normal use,

92

but when developing, it can be confusing to change Characteristic permissions and
not see the updates reflected on iOS.

To get around this, the iOS device must be restarted each time a Peripheral with the
same Identifier has has changed its GATT Profile

Putting It All Together

This app will work like the one from the previous chapter, except that once the it con-
nects to the Peripheral, it will also list the GATT Profile for that Peripheral. The GATT
Profile will be displayed in an UITableView (Figure 6-2).

Figure 6-2. GATT Profile downloaded from Peripheral

Create a new project called Services and copy everything from the previous example.
(Figure 6-3).

93

Figure 6-3. Project Structure

Objects

Modify BlePeripheral.swift to discover Services and Characteristics

Example 6-1. Models/BlePeripheral.swift

...

 /**

 Servicess were discovered on the connected Peripheral

 */

 func peripheral(

 _ peripheral: CBPeripheral,

94

 didDiscoverServices error: Error?)

 {

 print("services discovered")

 // clear GATT profile - start with fresh services listing

 gattProfile.removeAll()

 if error != nil {

 print("Discover service Error: \(error)")

 } else {

 print("Discovered Service")

 for service in peripheral.services!{

 self.peripheral.discoverCharacteristics(nil, for: service)

 }

 print(peripheral.services!)

 }

 }

 /**

 Characteristics were discovered

 for a Service on the connected Peripheral

 */

 func peripheral(

 _ peripheral: CBPeripheral,

 didDiscoverCharacteristicsFor service: CBService,

 error: Error?)

 {

 print("characteristics discovered")

 // grab the service

 let serviceIdentifier = service.uuid.uuidString

 print("service: \(serviceIdentifier)")

 gattProfile.append(service)

 if let characteristics = service.characteristics {

 print("characteristics found: \(characteristics.count)")

 for characteristic in characteristics {

 print("-> \(characteristic.uuid.uuidString)")

 }

95

 delegate?.blePerihperal?(

 discoveredCharacteristics: characteristics,

 forService: service,

 blePeripheral: self)

 }

 }

...

 
Delegates

Add a function to the BlePeripheralDelegate to alert when Characteristics have been
discovered:

Example 6-2. Delegates/BlePeripheralDelegate.swift

...

 /**

 Characteristics were discovered for a Service

 - Parameters:

 - characteristics: the Characteristic list

 - forService: the Service these Characteristics are under

 - blePeripheral: the BlePeripheral

 */

 @objc optional func blePerihperal(

 discoveredCharacteristics characteristics: [CBCharacteristic],

 forService: CBService,

 blePeripheral: BlePeripheral)

...

 

96

Storyboard

Add a UITableView and UITableViewCell to the PeripheralViewController. Make the UI-
TableView a "grouped" TableVew and make the UITableViewCell of class "GattTa-
bleViewCell" Give it the Reuse Identifier "GattTableViewCell." In the new GattTa-
bleViewCell, create and link a UILabel to be used to hold the Characteristic UUID (Fig-
ure 6-4):

Figure 6-4. Project Storyboard

Views

The GATT Profile will be represented as a Grouped UITableView, with Services as the
table header and Characteristics as the GattTableViewCell table cell.

Each GattTableViewCell will display the UUID of a Characteristic.

97

Example 6-3. UI/Views/GattTableViewCell.swift

import UIKit

import CoreBluetooth

class GattTableViewCell: UITableViewCell {

 @IBOutlet weak var uuidLabel: UILabel!

 func renderCharacteristic(characteristic: CBCharacteristic) {

 uuidLabel.text = characteristic.uuid.uuidString

 print(characteristic.uuid.uuidString)

 }

}

 
Controllers

Add functionality in the PeripheralViewController to render the GATT Profile table and
to handle the blePeripheral discoveredCharacteristics callback from the BlePeripheral-
Delegate class:

Example 6-4. UI/Controllers/PeripheralViewController.swift

class PeripheralViewController: UIViewController, UITableViewDataSource, \

 UITableViewDelegate, CBCentralManagerDelegate, BlePeripheralDelegate {

 // MARK: UI Elements

 @IBOutlet weak var advertisedNameLabel: UILabel!

 @IBOutlet weak var identifierLabel: UILabel!

 @IBOutlet weak var rssiLabel: UILabel!

 @IBOutlet weak var gattProfileTableView: UITableView!

 @IBOutlet weak var gattTableView: UITableView!

 // Gatt Table Cell Reuse Identifier

 let gattCellReuseIdentifier = "GattTableViewCell"

...

98

 // MARK: BlePeripheralDelegate

 /**

 Characteristics were discovered. Update the UI

 */

 func blePerihperal(

 discoveredCharacteristics characteristics: [CBCharacteristic],

 forService: CBService,

 blePeripheral: BlePeripheral)

 {

 gattTableView.reloadData()

 }

 /**

 RSSI discovered. Update UI

 */

 func blePeripheral(

 readRssi rssi: NSNumber,

 blePeripheral: BlePeripheral)

 {

 rssiLabel.text = rssi.stringValue

 }

 // MARK: UITableViewDataSource

 /**

 Return number of rows in Service section

 */

 func tableView(

 _ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int

 {

 print("returning num rows in section")

 if section < blePeripheral.gattProfile.count {

 if let characteristics = \

 blePeripheral.gattProfile[section].characteristics

99

 {

 return characteristics.count

 }

 }

 return 0

 }

 /**

 Return a rendered cell for a Characteristic

 */

 func tableView(

 _ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) -> UITableViewCell

 {

 print("returning table cell")

 let cell = tableView.dequeueReusableCell(

 withIdentifier: gattCellReuseIdentifier,

 for: indexPath) as! GattTableViewCell

 let section = indexPath.section

 let row = indexPath.row

 if section < blePeripheral.gattProfile.count {

 if let characteristics = \

 blePeripheral.gattProfile[section].characteristics

 {

 if row < characteristics.count {

 cell.renderCharacteristic(

 characteristic: characteristics[row])

 }

 }

 }

 return cell

 }

 /**

 Return the number of Service sections

100

 */

 func numberOfSections(in tableView: UITableView) -> Int {

 print("returning number of sections")

 print(blePeripheral)

 print(blePeripheral.gattProfile)

 return blePeripheral.gattProfile.count

 }

 /**

 Return the title for a Service section

 */

 func tableView(

 _ tableView: UITableView,

 titleForHeaderInSection section: Int) -> String?

 {

 print("returning title at section \(section)")

 if section < blePeripheral.gattProfile.count {

 return blePeripheral.gattProfile[section].uuid.uuidString

 }

 return nil

 }

 /**

 User selected a Characteristic table cell.

 Update UI and open the next UIView

 */

 func tableView(

 _ tableView: UITableView,

 didSelectRowAt indexPath: IndexPath)

 {

 let selectedRow = indexPath.row

 print("Selected Row: \(selectedRow)")

 tableView.deselectRow(at: indexPath, animated: true)

 }

101

 // MARK: Navigation

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 print("leaving view - disconnecting from peripheral")

 if let peripheral = blePeripheral.peripheral {

 centralManager.cancelPeripheralConnection(peripheral)

 }

 }

}

The resulting app will be able to connect to a Peripheral and list the Services and
Characteristics (Figure 6-5).

102

Figure 6-5. App screen showing GATT profile from a connected Peripheral

Programming the Peripheral

The Peripheral can be programmed to host a GATT Profile - the tree structure of Serv-
ices and Characteristics that a connected Central will use to communicate with the
Peripheral.

Services are created and added to the CBPeripheralManager, like this:

103

// Service UUID

let serviceUuid = CBUUID(string: "0000180c-0000-1000-8000-00805f9b34fb")

let service = CBMutableService(type: serviceUuid, primary: true)

peripheralManager.add(service)

When a Service is added to the Peripheral, the peripheralManager didAdd callback
will be triggered by the CBPeripheralManagerDelegate.

func peripheralManager(

 _ peripheral: CBPeripheralManager,

 didAdd service: CBService, error: Error?)

{

}

Characteristics must have defined properties. These properties allow a connected
Central to read data from, write data to, and/or subscribe to notifications from a Char-
acteristic. Some common properties are enumerated in the CBCharacteristicProper-
ties class:

Table 6-3. Common CBCharacteristicProperties

Value Permissi
on Description

read Read

write Write

writeWithoutResp
onse Write

notify Notify

The characteristic’s value can be read.

The characteristic’s value can be written, with a
response from the peripheral to indicate that
the write was successful.

The characteristic’s value can be written,
without a response from the peripheral.

Notifications of the characteristic’s value are
permitted.

104

 
Create the Characteristics properties by instanciating and merging CBCharacteris-
ticProperties:

// create read Characteristic properties

var characteristicProperties = CBCharacteristicProperties.read

// append write propertie

characteristicProperties.formUnion(CBCharacteristicProperties.write)

// append notify support

characteristicProperties.formUnion(CBCharacteristicProperties.notify)

A Characteristic must also define it's attribute permissions. An example of an attrib-
ute is a flag that is set when a connected Characteristic wants to subscribe to a Char-
actersitic.

Examples of common Attribute Permissions are enumerated in the CBAttributePer-
missions class.

Table 6-3. Common CBAttributePermissions

Value Description

readable

writeable

The Characteristic’s Attributes can be read by a
connected Central.

The Characteristic’s Attributes can be altered by a
connected Central.

 
Create Attribute permissions.

// set the Characteristic's Attribute permissions

var characterisitcPermissions = CBAttributePermissions.writeable

// append permissions

characterisitcPermissions.formUnion(CBAttributePermissions.readable)

105

Create a new CBMutableCharacteristic with the defined properties. Optionally an ini-
tial value can be set.

let characteristicUuid = \

 CBUUID(string: "00002a56-0000-1000-8000-00805f9b34fb")

var value:Data!

// instantiate a Characteristic

let characteristic = CBMutableCharacteristic(

 type: characteristicUuid,

 properties: characteristicProperties,

 value: value,

 permissions: characterisitcPermissions)

Add one or more Characteristics to a Service by creating a [CBMutableCharacteris-
tic] array.

// set the service Characterisic array

service.characteristics = [characteristic]

A Note on GATT Profile Best Practices

All Peripherals should contain Device information and a Battery Service, resulting in a
minimal GATT profile for any Peripheral that resembles this (Figure 6-6).

106

Figure 6-6. Minimal GATT Profile for Peripherals

This provides Central software, surveying tools, and future developers to better under-
stand what each Peripheral is, how to interact with it, and what the battery capabili-
ties are.

For pedagogical reasons, many of the examples will not include this portion of the
GATT Profile.

Putting It All Together

Create a new project called GattProfile and copy everything from the previous exam-
ple.

Models

Modify BlePeripheral.swift to build a minimal Gatt Services profile. Build the GATT
Profile structure, and handle the callback when Services are added.

Example 6-5. Models/BlePeripheral.swift

...

107

 // MARK: GATT Profile

 // Service UUID

 let serviceUuid = CBUUID(string: "0000180c-0000-1000-8000-00805f9b34fb")

 // Characteristic UUIDs

 let characteristicUuid = CBUUID(

 string: "00002a56-0000-1000-8000-00805f9b34fb")

 // Read Characteristic

 var characteristic:CBMutableCharacteristic!

...

 /**

 Build Gatt Profile.

 This must be done after Bluetooth Radio has turned on

 */

 func buildGattProfile() {

 let service = CBMutableService(type: serviceUuid, primary: true)

 var characteristicProperties = CBCharacteristicProperties.read

 characteristicProperties.formUnion(

 CBCharacteristicProperties.notify)

 var characterisitcPermissions = CBAttributePermissions.writeable

 characterisitcPermissions.formUnion(CBAttributePermissions.readable)

 characteristic = CBMutableCharacteristic(

 type: characteristicUuid,

 properties: characteristicProperties,

 value: nil,

 permissions: characterisitcPermissions)

 service.characteristics = [characteristic]

 peripheralManager.add(service)

 }

...

 /**

 Peripheral added a new Service

 */

 func peripheralManager(

 _ peripheral: CBPeripheralManager,

108

 didAdd service: CBService,

 error: Error?)

 {

 print("added service to peripheral")

 if error != nil {

 print(error.debugDescription)

 }

 }

 /**

 Bluetooth Radio state changed

 */

 func peripheralManagerDidUpdateState(

 _ peripheral: CBPeripheralManager)

 {

 peripheralManager = peripheral

 switch peripheral.state {

 case CBManagerState.poweredOn:

 buildGattProfile()

 startAdvertising()

 default: break

 }

 delegate?.blePeripheral?(stateChanged: peripheral.state)

 }

...

The resulting app will be able to host a minimal GATT Profile.

Example code

The code for this chapter is available online
at: https://github.com/BluetoothLowEnergyIniOSSwift/Chapter06

109

Bluetooth Low Energy in iOS Swift

1st Edition

Tony Gaitatzis

BackupBrain Publishing, 2017

ISBN: 978-1-7751280-5-2

backupbrain.co

i

Other Books in this Series

If you are interested in programming Bluetooth Low Energy Devices, please check
out the other books in this series or visit bluetoothlowenergy.co: 

Bluetooth Low Energy in Android Java

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-4-5  

Bluetooth Low Energy in Arduino 101

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-6-9  

Bluetooth Low Energy in iOS Swift

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-5-2  

Bluetooth Low Energy in C++ for nRF Microcontrollers

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-7-6

92

http://backupbrain.co
http://backupbrain.co

